Early Power Mobility: Who, Why and How?

NRRTS webinar
25th January 2018
Roslyn Livingstone
MSc(RS) OT
rlivingstone@cw.bc.ca

Objectives

- 1. Identify at least 2 different groups of children who can benefit from power mobility in early childhood
- 2. Identify at least 3 different developmental benefits of power mobility for children
- 3. Identify at least 3 environmental factors influencing use of power mobility with young children
Outline

- Introduction
- Who benefits?
- Why? Evidence supporting outcomes
- How?
 - Environmental factors influencing success
 - Training approaches
- Case studies

Why power mobility?

- Grounded cognition: early sitting, object interaction, locomotion
- Independent mobility is vital for overall development
- Children begin to move around independently and explore from 9-12 months
Why not manual mobility?

1 of 7 self-propels 3-18 years

6 of 7 drives independently 3-18 yr

Christina B. Ragonesi, BS; Xi Chen, BS; Sunil Agrawal, PhD; James Cole Galloway, PT, PhD

- Device feasible in preschool – no significant increase in socialization
- Follow-up - socialization training
- Increased socialization but still significantly lower than peers
- Suggestions:
 - Start power mobility training younger
 - Longer-term social skills training

Typical co-emergence of mobility and socialization

Real-World Performance: Physical Activity, Play, and Object-Related Behaviors of Toddlers With and Without Disabilities

Samuel W. Logan, PhD; Melynda Schreiber, MS; Michele Lobo, PT, PhD; Breanna Pritchard, BS; Lisa George, BS; James Cole Galloway, PT, PhD

- 23 typical toddlers
- 2 toddlers - GMFCS IV and GMFCS I

- TD 3-4 hours a day combining physical activity, play & object-related behaviours
- CP - more time in sitting and much less time engaged in peer interaction or object-related behaviours
Why We Move: Social Mobility Behaviors of Non-Disabled and Disabled Children across Childcare Contexts
Frontiers in Public Health 2016
Samuel W. Logan, Samantha Mae Ross, Melynda A. Schreiber, Heather A. Feldner, Michele A. Lobo, Michele A. Catena, Megan MacDonald and James C. Galloway

- 55 children TD
- 3 – GMFCS I, III and IV
- Social mobility lower in classroom versus gym and playground
- Substantial gap between children with and without disabilities
- Gap widens - from age 3

Practice considerations for the introduction and use of power mobility for children

Roslyn Livingstone¹ | Ginny Paleg²

- Children who will never walk
- Children with inefficient mobility
- Children who lose mobility
- Children who require mobility assistance in early childhood

(Hays, 1987, Livingstone & Paleg 2014)
Children who will never walk

- Severe Cerebral Palsy GMFCS IV and V
- SMA type I and II
- Limb deficiencies
- Severe arthrogryposis
- Neonatal spinal cord injury
- Osteogenesis Imperfecta types II, III and VIII

Children with inefficient mobility

- Moderate Cerebral Palsy GMFCS levels II, III and IV
- C6 or C7 spinal cord injury
- Thoracic level spina bifida
- Osteogenesis Imperfecta types IV-VII
Children who require mobility assistance in early childhood

- Arthrogryposis
- Lumbar level spina bifida
- Osteogenesis Imperfecta
- Genetic disorders
- Complex medical conditions

Children who lose the ability to walk, or to walk efficiently

- Neuromuscular diseases e.g. Duchenne muscular dystrophy, Limb girdle dystrophy, SMA III
- Acquired brain injury
- Spinal Cord Injury
Poll

How many of you agree with providing power mobility to young children who are expected to walk or to use a manual wheelchair efficiently when they are older?

- Yes – and I have done it
- Yes - but I have not done it
- No - I disagree

Poll

What is the youngest age you have provided power mobility for a child who will never walk?

- Under 12 months
- 12-17 months
- 18-23 months
- 24-19 months
- 30-36 months
Body Structure and Function

- Cognition
 Level II - Jones et al., 2012
 Level V - Lynch et al., 2009

- Receptive language
 Level II - Jones et al., 2012
 Level V - Lynch et al., 2009

- Alertness and motivation
 Qualitative - Nilsson & Nyberg, 2003

- Sleep/wake cycle
 Level IV - Tefft et al., 2012
Activity

- **Independence**
 - Level IV - Bottos et al., 2001
 - Level V - Douglas & Ryan, 1987

- **Self-initiated movement**
 - Level III - Butler, 1986
 - Level IV - Deitz et al., 2002

- **Cause-effect**
 - Qualitative - Nilsson & Nyberg, 2003

Participation

- **Social and play skills**
 - Level IV - Tefft et al., 2012
 - Guerette et al., 2013
 - Level V - Ragonesi et al., 2010
 - Ragonesi et al., 2011

- **Personal-social and communication**
 - Level V - Jones et al., 2003

- **Peer relationships**
 - Level V - Everard, 1984
 - Qualitative - Wiart et al., 2004
Effects of power wheelchairs on the development and function of young children with severe motor impairments

Jones et al., 2012

- Increased receptive language
- Increased overall development
- Increased functional mobility
- Decreased need for caregiver assistance
- No negative impact on motor development

28 children (GMFCS IV or V) 14.8 to 30 months

The child and family experience of power mobility: a qualitative synthesis

Roslyn Livingstone¹ | Debra Field²

- Promotes developmental change & independence
- Enhances social relationships & engagement in meaningful life experiences
- Access & use influenced by factors in physical, social & attitudinal environments
Consensus on 9 messages:

- augmented mobility experiences below 8mo
- maneuver a PMD below 14mo...
- competent control ...18–24mo.
- support overall development
- enhance independence and meaningful participation...
- no evidence that PM impedes ... ambulation ...
- promote independence and...overall development
- self-initiated behavior and learning
- severe intellectual and/or sensory impairments ...
- practice time and learning support ...

Message 1: With access to a specialized power mobility device, it is possible for infants with disabilities to have augmented mobility experiences as early as 8 months of age
Message 2

Children around 14 months of age...

can begin learning to maneuver a power mobility device

Level II
- Jones et al., 2012

Message 2 continued

Children as young as 18-24 months...

have demonstrated competent power wheelchair control using a joystick

Level V
- Butler et al., 1983 and 1984
- Everard, 1984
- Jones et al., 2003
- Dunaway et al., 2012
Message 3

For children with minimal mobility experience...

a power mobility device can promote overall development as well as functional mobility

- Infant with L4/5 meningomyelocele
- 7 months - 12 months of age
- Power mobility training 2-3 times a week
- Increased:
 - Joystick activation
 - Average path length
 - Total distance
 - Goal oriented driving
- Gains in language, fine motor, cognition - Bailey III

Used with permission: University of Delaware photo services
Andrew video

Message 4
For children with inefficient mobility...

power mobility may enhance independence and facilitate participation in family, school and community life

Level IV – Guerette et al., 2013
Tefft et al., 2012
Bottos et al. 2001
Qualitative - Wiart et al., 2004
Positive impact of early powered mobility on children’s psycho-social and play skills.
Assistive Technology (2013) Guerette, Furumasu & Tefft

- 23 children 18 months – 6 years
- 3 measurement points – at assessment, at wheelchair delivery and after 4-6 months of wheelchair use
- Positive impact on level of play and social skills
- Increased mobility but more difficulty remaining engaged in tasks

The Impact of Early Powered Mobility on Parental Stress, Negative Emotions, and Family Social Interactions
Physical & Occupational Therapy in Pediatrics (2012) Tefft, Guerette, & Furumasu

- Decreased parental stress
- Increased satisfaction with
 - Child’s play and social skills
 - Ability to go where desired
 - Belief that the general public accepts their child
 - Child’s sleep/wake cycle

Used with permission: MERU
Message 5
There is no evidence that...

using power mobility at a young age impedes development of ambulation or other motor skills

- Level II - Jones et al., 2012
- Level IV - Bottos et al., 2001

Power-Up: Exploration and Play in a Novel Modified Ride-On Car for Standing

Pediatric Physical Therapy 2017 29(1), 30-37
Samuel W Logan, PhD; Michele A. Lobo, PT, PhD; Heather A. Feldner, PT, PhD, PCS; Melynda Schreiber, MS; Megan MacDonald, PhD; Haylee N. Winden, BS; Tracy Stoner, PT, DPT, PCS; James Cole Galloway, PT, PhD

- 42 pre-schoolers, 1 with a disability
- Stand-up ride-on toy car vs crutches
- Compared play in gym and playground
- Increased parallel play
 - in gym
- Increased peer interaction
 - in playground
- ‘right device, right time, right place’
Message 6
Children with conditions that limit early functional mobility...

may benefit from power mobility to promote independence and support overall development.

- Before and after design
- 25 children aged 3-8 years
- Tetraplegic CP
- 6-8 months baseline
- 6-8 months powered mobility use
- Highly significant increase in independence (COPM)
- No change in motor skills
Message 7

Mobility experience in a power mobility device may support development of self-initiated behavior and learning.

- 13 months old - Down Syndrome
- 6 baseline sessions
- 12 weeks intervention
- 4 retention sessions
- Increased independent mobility
- Increased self-care, mobility and social function
- Increased socialization with sister and other children in community

- 45 children and adults with profound cognitive disabilities
- 8 phases identified – growing consciousness of joystick use
- Participants empowered by increased tool use
- 8 individuals achieved goal directed power wheelchair use

Message 8

Many children with severe intellectual and/or sensory impairments... can learn to use a power mobility device competently with appropriate practice and environmental support.

- 21 month old
- Cerebral palsy – GMFCS level IV
- 1 week baseline
- 12 weeks intervention
- 2 weeks post intervention
- Increased mobility
- Increased vocalizations
- Increased functional mobility and social skills

- Cognitive level and motor deficit not statistically related to driving performance
- Most children 21/27 were able to drive including 7/13 with IQ below 55
Successful development of power mobility skills... may depend at least as much on...

practice time and quality of **learning support** within the child’s environment as the child’s motor, cognitive or sensory abilities

Power mobility access and use is influenced by factors in the physical, social and attitudinal environment (Livingstone & Field 2015)

- Physical environment and transportation
- PWC features
- Other’s attitudes: Parents, public
 - Bottos et al., 2001; Tefft et al., 2012; Everard 1984
- Service delivery – therapists attitudes
A radical change from ‘last resort’ to ‘first choice’

- Developmentally appropriate power mobility devices – light weight, low cost, toy-based, affordable/fundable
- Designed in collaboration with children and families

Feldner et al., (2016) ‘Why the time is right for a radical paradigm shift in early powered mobility’ *Disability & Rehabilitation: Assistive Technology* 11(2):89-102

- 90 children aged 15-72mo
- Average loan period 15mo
- 67% achieved goals
 - Independence and autonomy
 - Social inclusion and play
 - Increased mobility skills
- *Happiness and enjoyment* – impact on child and whole family
Of 1009(676) pediatric therapists in US/Canada

- Most have a positive attitude
- Most in agreement with practice consideration statements
- Opportunity for practice and parental attitudes more influential when prescribing power wheelchair than providing experiences in therapy
- Few actively engaged in providing early power mobility experiences
- Few monitoring fit and function or providing training
- What are the barriers and facilitators?

How?

- How best to provide power mobility experience and training for young children?

Lisa K. Kenyon, PT, DPT, PhD, PCS; Lisa Hostnik, PT, DPT; Rachel McElroy, PT, DPT; Courtney Peterson, PT, DPT; John P. Farris, PhD

- Children up to 21 years
- 27 studies included - Evidence levels II-V
- Traffic lighting – insufficient evidence to make strong recommendations
- Strongest evidence supports combining play and natural environments
- Weak support for skills-based approaches
- Virtual reality and computer-based training supported for some children without physical or cognitive disabilities

- Training characteristics important to outcome:
 - Taking part in more than 30 training sessions
 - Training for more than 2 years
 - Training at more than one location
 - High degree of training with a professional trainer
 - No trainee characteristics significant to outcome

- 11 months old at risk for CP
- 🆙looking at and touching joystick on right
- 🆙moving wheelchair independently and in response to adult

Video of Mya training
Feasibility of a modified ride-on car intervention on play behaviors during an inclusive playgroup

Physical & Occupational Therapy in Pediatrics (2017)
Ross, Catena et al... Logan.

- 13 children, 5 with disabilities 1-3 years
- Weekly inclusive playgroup - SSRD AB
- Feasible for inclusive settings
- Some change in interactions

Ride-on Car Training: hospital environment

Huang et al., 2017a; 2017b

- 10 children CP, DS, DD – 11-34 months
- 9 weeks intensive ROC training vs conventional therapy (10 controls)
- Increased independent mobility – start/stop and switch use
- Increased mobility and socialization(PEDI-C)
- Control group increased socialization only
- Institutional environment feasible
Beginning Power Mobility:

Exploration of factors influencing use of power mobility in early childhood

- Wizzybug
- Bugzi
- Tiger Cub
- Toy Car
WhOM-YP
Importance and Satisfaction

Meet Holly
- Twin – born at 31 weeks
- CP - Spastic diplegia
- GMFCS III
- MACS III
- CFCS IV
- LSS 4 (support from pelvis)

Holly video in gym

Participation Outcome

Plays with other kids

Initial
- Importance - 10
- Satisfaction - 4

After 6 Months
- Importance - 9
- Satisfaction - 9
Holly video outside

Meet Skyla and Jayde

- Twins born at 25 weeks
- Dystonic CP
- GMFCS V
- MACS V
- CFCS IV
- LSS 2 (support from the head down)
Gobot and ride on toys

- Large indoor space
- Positioning support
- Alternate access
Car wash video

Timber video
Skyla and Jayde

<table>
<thead>
<tr>
<th>Enjoy movement</th>
<th>Initial</th>
<th>After 6 Months</th>
<th>Ability to use switches</th>
<th>Initial</th>
<th>After 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skyla</td>
<td>2</td>
<td>7</td>
<td>Jayde</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Jayde</td>
<td>2</td>
<td>9</td>
<td></td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Emmett

- 16 months SMA I
- Level of sitting scale - 2 support from the head down
- CFCS – IV
- Using Tiger Cub – at home
Video
17 months – playing outside

19 months – inside video
Emmett

Activity Outcome

Able to move around home independently

Initial
- Importance - 10
- Satisfaction – 1

After
- Importance - 10
- Satisfaction -10

CONTACT INFORMATION

Roslyn Livingstone, MSC(RS), OT: rlivingstone@cw.bc.ca